
CS61B Spring 2024

Graphs II, Tries
Exam Prep 10

CS61B Spring 2024

Announcements

Sunday Monday Tuesday Wednesday Thursday Friday Saturday

4/1
Project 2B/2C due

4/5
Lab 09 due

4/12
Lab 10 due

CS61B Spring 2024

Content Review

CS61B Spring 2024

Topological Sort

Topological Sort is a way of transforming a directed acyclic graph into a linear ordering of vertices, where for

every directed edge u v, vertex u comes before v in the ordering.

5

4

0

2

1

3 5 4 2 3 1 0

CS61B Spring 2024

Topological Sort

Key Ideas:
- Not having a topological sort indicates a that the graph has directed cycle (only works on DAGs)

- Most DAGs have multiple topological sorts

- Source node: a node that has no incoming edges

- Sink node: a node that has no outgoing edges

5

4

0

2

1

3 5 4 2 3 1 0

CS61B Spring 2024

Graph Algorithm Runtimes

For a graph with V vertices and E edges:

Graph Algorithm Runtime

DFS O (V + E)

BFS O (V + E)

Dijkstra's O((V + E) log V)

A* O((V + E) log V)

Prim’s O((V + E) log V)

Kruskal’s O(E log E)

CS61B Spring 2024

Tries

Tries are special trees mostly used for language tasks.

Each node in a trie is marked as being a word-end (a “key”) or not, so you can quickly check whether a word

exists within your structure.

C

A

T

C

H

D

O

G

I

G

CS61B Spring 2024

Longest prefix of: follow the trie until the letters no longer match, keeping track of the most recent “end”

Trie Operations

longestPrefixOf(“catchall”) →
“catch”

C

A

T

C

H

D

O

G

I

G

CS61B Spring 2024

Trie Operations

Keys with prefix: follow until the end of the prefix, then traverse all words below that node.

keysWithPrefix(“ca”) → “catch”,
“cat”

C

A

T

C

H

D

O

G

I

G

CS61B Spring 2024

Worksheet

CS61B Spring 2024

1 Multiple MSTs
Recall a graph can have multiple MSTs if there are multiple spanning trees of minimum weight.

1. If some of the edge weights are identical, there will never/sometimes/always be multiple MSTs.

2. If all of the edge weights are identical, there will never/sometimes/always be multiple MSTs.

CS61B Spring 2024

1 Multiple MSTs
Recall a graph can have multiple MSTs if there are multiple spanning trees of minimum weight.

1. If some of the edge weights are identical, there will never/sometimes/always be multiple MSTs.

2. If all of the edge weights are identical, there will never/sometimes/always be multiple MSTs.

A

B

C

1

1

2

A

B

C

2

1

2

Only 1 MST

A

B

C

2

1

2

Multiple MSTs

CS61B Spring 2024

1 Multiple MSTs
Recall a graph can have multiple MSTs if there are multiple spanning trees of minimum weight.

1. If some of the edge weights are identical, there will never/sometimes/always be multiple MSTs.

2. If all of the edge weights are identical, there will never/sometimes/always be multiple MSTs.

A

B

C

1

1

A

B

C

1

1

1

Only 1 MST

A

B

C

1

1

1

Multiple MSTs

CS61B Spring 2024

1 Multiple MSTs
Suppose we have a connected, undirected graph G with N vertices and N edges, where all the edge weights

are identical. Find the maximum and minimum number of MSTs in G and explain your reasoning.

CS61B Spring 2024

1 Multiple MSTs
Suppose we have a connected, undirected graph G with N vertices and N edges, where all the edge weights

are identical. Find the maximum and minimum number of MSTs in G and explain your reasoning.

Min: 3, Max: N

CS61B Spring 2024

1 Multiple MSTs
Suppose we have a connected, undirected graph G with N vertices and N edges, where all the edge weights

are identical. Find the maximum and minimum number of MSTs in G and explain your reasoning.

Min: 3, Max: N

Find a cycle in the graph. Excluding one edge in the cycle creates an MST.

The minimum cycle is 3 edges and the maximum is N edges.

CS61B Spring 2024

1 Multiple MSTs
Suppose we have a connected, undirected graph G with N vertices and N edges, where all the edge weights

are identical. Find the maximum and minimum number of MSTs in G and explain your reasoning.

Example:

CS61B Spring 2024

1 Multiple MSTs
It is possible that Prim’s and Kruskal’s find different MSTs on the same graph G. Given any graph G with

integer edge weights, modify G to ensure that Prim’s and Kruskal’s will always find the same MST. You may

not modify Prim’s or Kruskal’s.

CS61B Spring 2024

1 Multiple MSTs
It is possible that Prim’s and Kruskal’s find different MSTs on the same graph G. Given any graph G with

integer edge weights, modify G to ensure that Prim’s and Kruskal’s will always find the same MST. You may

not modify Prim’s or Kruskal’s.

Answer: If the edge weights are unique, there is only one MST. To make the edge weights unique, add a
small offset to each edge. The offset has to be unique and less than 1/E to avoid changing the actual MST.

CS61B Spring 2024

1 Multiple MSTs
It is possible that Prim’s and Kruskal’s find different MSTs on the same graph G. Given any graph G with

integer edge weights, modify G to ensure that Prim’s and Kruskal’s will always find the same MST. You may

not modify Prim’s or Kruskal’s.

Example:

B

C

D A

1
1

1

1

B

C

D A

1.2
1.6

1.4

1

CS61B Spring 2024

2 Topological Sorting for Cats

Describe at a high level how to perform a topological sort using an algorithm we already know (hint: it

involves DFS), and provide the time complexity.

CS61B Spring 2024

2 Topological Sorting for Cats

Describe at a high level how to perform a topological sort using an algorithm we already know (hint: it

involves DFS), and provide the time complexity.

Answer: Reverse the edges, then perform a postorder traversal until all vertices are visited.

Alternative: Perform a DFS traversal from every vertex with indegree 0. Record DFS postorder in a list.

Topological ordering is given by the reverse of that list (reverse postorder).

Runtime: O(V + E) for DFS

CS61B Spring 2024

2 Topological Sorting for Cats

First, provide a logical reasoning for the following claim (or a proof!): Every DAG has at least one source

node (no incoming edges), and at least one sink node (no outgoing edges).

CS61B Spring 2024

2 Topological Sorting for Cats

First, provide a logical reasoning for the following claim (or a proof!): Every DAG has at least one source

node (no incoming edges), and at least one sink node (no outgoing edges).

Answer: Suppose a DAG exists with no sinks. Then every node has at least one outgoing edge. If we

traverse all V vertices of this graph, we can always take an outgoing edge to some other node. This

means at the last Vth (last) vertex we visit, we must take an outgoing edge to some already-visited node.

But this means that there is a cycle, which contradicts that our graph is a DAG.

Suppose a DAG exists with no sources. Reversing the edges makes every source a sink, and apply the

proof from above.

CS61B Spring 2024

2 Topological Sorting for Cats

First, provide a logical reasoning for the following claim (or a proof!): Every DAG has at least one source

node (no incoming edges), and at least one sink node (no outgoing edges).

Example:

1

2

3
4

5

V …

CS61B Spring 2024

2 Topological Sorting for Cats

Complete the following instance methods computeInDegrees and findAllSourceNodes.

public class DAG extends Graph {
 // Computes the number of incoming edges to a vertex
 public int[] computeInDegrees() {
 int[] indegree = ______________________;
 for (_________________________________) {
 for (__________________________) {

 }
 }
 return indegree;
 }
}

CS61B Spring 2024

2 Topological Sorting for Cats

Complete the following instance methods computeInDegrees and findAllSourceNodes.

public class DAG extends Graph {
 // Computes the number of incoming edges to a vertex
 public int[] computeInDegrees() {
 int[] indegree = new int[V()];
 for (_________________________________) {
 for (__________________________) {

 }
 }
 return indegree;
 }
}

CS61B Spring 2024

2 Topological Sorting for Cats

Complete the following instance methods computeInDegrees and findAllSourceNodes.

public class DAG extends Graph {
 // Computes the number of incoming edges to a vertex
 public int[] computeInDegrees() {
 int[] indegree = new int[V()];
 for (int i = 0; i < V(); i++) {
 for (__________________________) {

 }
 }
 return indegree;
 }
}

CS61B Spring 2024

2 Topological Sorting for Cats

Complete the following instance methods computeInDegrees and findAllSourceNodes.

public class DAG extends Graph {
 // Computes the number of incoming edges to a vertex
 public int[] computeInDegrees() {
 int[] indegree = new int[V()];
 for (int i = 0; i < V(); i++) {
 for (int w : adj(i)) {

 }
 }
 return indegree;
 }
}

CS61B Spring 2024

2 Topological Sorting for Cats

Complete the following instance methods computeInDegrees and findAllSourceNodes.

public class DAG extends Graph {
 // Computes the number of incoming edges to a vertex
 public int[] computeInDegrees() {
 int[] indegree = new int[V()];
 for (int i = 0; i < V(); i++) {
 for (int w : adj(i)) {
 indegree[w]++;
 }
 }
 return indegree;
 }
}

The runtime is O(V + E), because we iterate through all
the vertices and edges in the graph in the first method.

CS61B Spring 2024

2 Topological Sorting for Cats

Complete the following instance methods computeInDegrees and findAllSourceNodes.

public class DAG extends Graph {
 // Finds all source nodes in the graph
 public List<Integer> findAllSourceNodes(int[] indegree) {
 List<Integer> sources = new ArrayList<>();
 for (_________________________________) {
 if (__________________________) {

 }
 }
 return ___________________;
 }
}

CS61B Spring 2024

2 Topological Sorting for Cats

Complete the following instance methods computeInDegrees and findAllSourceNodes.

public class DAG extends Graph {
 // Finds all source nodes in the graph
 public List<Integer> findAllSourceNodes(int[] indegree) {
 List<Integer> sources = new ArrayList<>();
 for (int i = 0; i < V(); i++) {
 if (__________________________) {

 }
 }
 return ___________________;
 }
}

CS61B Spring 2024

2 Topological Sorting for Cats

Complete the following instance methods computeInDegrees and findAllSourceNodes.

public class DAG extends Graph {
 // Finds all source nodes in the graph
 public List<Integer> findAllSourceNodes(int[] indegree) {
 List<Integer> sources = new ArrayList<>();
 for (int i = 0; i < V(); i++) {
 if (indegree[i] == 0) {

 }
 }
 return ___________________;
 }
}

CS61B Spring 2024

2 Topological Sorting for Cats

Complete the following instance methods computeInDegrees and findAllSourceNodes.

public class DAG extends Graph {
 // Finds all source nodes in the graph
 public List<Integer> findAllSourceNodes(int[] indegree) {
 List<Integer> sources = new ArrayList<>();
 for (int i = 0; i < V(); i++) {
 if (indegree[i] == 0) {
 sources.add(i);
 }
 }
 return ___________________;
 }
}

CS61B Spring 2024

2 Topological Sorting for Cats

Complete the following instance methods computeInDegrees and findAllSourceNodes.

public class DAG extends Graph {
 // Finds all source nodes in the graph
 public List<Integer> findAllSourceNodes(int[] indegree) {
 List<Integer> sources = new ArrayList<>();
 for (int i = 0; i < V(); i++) {
 if (indegree[i] == 0) {
 sources.add(i);
 }
 }
 return sources;
 }
}

The runtime is O(V). This is because we only iterate
through the vertices.

CS61B Spring 2024

2 Topological Sorting for Cats

Complete the following instance methods computeInDegrees and findAllSourceNodes.

Example:

5

4

0

2

1

3

Adjacency list
0: []
1: []
2: [3]
3: [1]
4: [0, 2]
5: [0, 1]

Incoming Edges
[0, 0, 0, 0, 0, 0]

CS61B Spring 2024

2 Topological Sorting for Cats

5

4

0

2

1

3

Adjacency list
0: []
1: []
2: [3]
3: [1]
4: [0, 2]
5: [0, 1]

Incoming Edges
[0, 0, 0, 0, 0, 0]

Complete the following instance methods computeInDegrees and findAllSourceNodes.

Example:

CS61B Spring 2024

2 Topological Sorting for Cats

5

4

0

2

1

3

Adjacency list
0: []
1: []
2: [3]
3: [1]
4: [0, 2]
5: [0, 1]

Incoming Edges
[0, 0, 0, 0, 0, 0]

Complete the following instance methods computeInDegrees and findAllSourceNodes.

Example:

CS61B Spring 2024

2 Topological Sorting for Cats

5

4

0

2

1

3

Adjacency list
0: []
1: []
2: [3]
3: [1]
4: [0, 2]
5: [0, 1]

Incoming Edges
[0, 0, 0, 0, 0, 0]

Complete the following instance methods computeInDegrees and findAllSourceNodes.

Example:

CS61B Spring 2024

2 Topological Sorting for Cats

5

4

0

2

1

3

Adjacency list
0: []
1: []
2: [3]
3: [1]
4: [0, 2]
5: [0, 1]

Incoming Edges
[0, 0, 0, 0, 0, 0]

Complete the following instance methods computeInDegrees and findAllSourceNodes.

Example:

CS61B Spring 2024

2 Topological Sorting for Cats

5

4

0

2

1

3

Adjacency list
0: []
1: []
2: [3]
3: [1]
4: [0, 2]
5: [0, 1]

Incoming Edges
[0, 0, 0, 1, 0, 0]

counts[3] += 1

Complete the following instance methods computeInDegrees and findAllSourceNodes.

Example:

CS61B Spring 2024

2 Topological Sorting for Cats

5

4

0

2

1

3

Adjacency list
0: []
1: []
2: [3]
3: [1]
4: [0, 2]
5: [0, 1]

Incoming Edges
[0, 1, 0, 1, 0, 0]

counts[1] += 1

Complete the following instance methods computeInDegrees and findAllSourceNodes.

Example:

CS61B Spring 2024

2 Topological Sorting for Cats

5

4

0

2

1

3

Adjacency list
0: []
1: []
2: [3]
3: [1]
4: [0, 2]
5: [0, 1]

Incoming Edges
[1, 1, 1, 1, 0, 0]

counts[0] += 1
counts[2] += 1

Complete the following instance methods computeInDegrees and findAllSourceNodes.

Example:

CS61B Spring 2024

2 Topological Sorting for Cats

5

4

0

2

1

3

Adjacency list
0: []
1: []
2: [3]
3: [1]
4: [0, 2]
5: [0, 1]

Incoming Edges
[2, 2, 1, 1, 0, 0]

counts[0] += 1
counts[1] += 1

Complete the following instance methods computeInDegrees and findAllSourceNodes.

Example:

CS61B Spring 2024

2 Topological Sorting for Cats

5

4

0

2

1

3

Sources: 4, 5 Incoming Edges
[2, 2, 1, 1, 0, 0]

Complete the following instance methods computeInDegrees and findAllSourceNodes.

Example:

5

4

0

2

1

3

CS61B Spring 2024

2 Topological Sorting for Cats
Now, make the following observation: If we remove all of the source nodes from a DAG, we are

guaranteed to have at least one new source node. Inspired by this fact, and using the previous parts,

complete the topologicalSort method. What is its runtime?

public List<Integer> topologicalSort() {
 List<Integer> sorted = new ArrayList<>();
 __
 // Hint: add elements from another iterable here
 Queue<Integer> sources = new ArrayDeque<>(_______________________);
 while (________________________________) {
 int source = sources.poll();

 for (______________________________________) {

 if (________________________) {

 }
 }
 }
 return sorted;
}

CS61B Spring 2024

2 Topological Sorting for Cats
Now, make the following observation: If we remove all of the source nodes from a DAG, we are

guaranteed to have at least one new source node. Inspired by this fact, and using the previous parts,

complete the topologicalSort method. What is its runtime?

public List<Integer> topologicalSort() {
 List<Integer> sorted = new ArrayList<>();
 int[] indegree = computeInDegrees();
 // Hint: add elements from another iterable here
 Queue<Integer> sources = new ArrayDeque<>(_______________________);
 while (________________________________) {
 int source = sources.poll();

 for (______________________________________) {

 if (________________________) {

 }
 }
 }
 return sorted;
}

CS61B Spring 2024

2 Topological Sorting for Cats
Now, make the following observation: If we remove all of the source nodes from a DAG, we are

guaranteed to have at least one new source node. Inspired by this fact, and using the previous parts,

complete the topologicalSort method. What is its runtime?

public List<Integer> topologicalSort() {
 List<Integer> sorted = new ArrayList<>();
 int[] indegree = computeInDegrees();
 // Hint: add elements from another iterable here
 Queue<Integer> sources = new ArrayDeque<>(findAllSourceNodes(indegree));
 while (________________________________) {
 int source = sources.poll();

 for (______________________________________) {

 if (________________________) {

 }
 }
 }
 return sorted;
}

CS61B Spring 2024

2 Topological Sorting for Cats
Now, make the following observation: If we remove all of the source nodes from a DAG, we are

guaranteed to have at least one new source node. Inspired by this fact, and using the previous parts,

complete the topologicalSort method. What is its runtime?

public List<Integer> topologicalSort() {
 List<Integer> sorted = new ArrayList<>();
 int[] indegree = computeInDegrees();
 // Hint: add elements from another iterable here
 Queue<Integer> sources = new ArrayDeque<>(findAllSourceNodes(indegree));
 while (!sources.isEmpty()) {
 int source = sources.poll();

 for (______________________________________) {

 if (________________________) {

 }
 }
 }
 return sorted;
}

CS61B Spring 2024

2 Topological Sorting for Cats
Now, make the following observation: If we remove all of the source nodes from a DAG, we are

guaranteed to have at least one new source node. Inspired by this fact, and using the previous parts,

complete the topologicalSort method. What is its runtime?

public List<Integer> topologicalSort() {
 List<Integer> sorted = new ArrayList<>();
 int[] indegree = computeInDegrees();
 // Hint: add elements from another iterable here
 Queue<Integer> sources = new ArrayDeque<>(findAllSourceNodes(indegree));
 while (!sources.isEmpty()) {
 int source = sources.poll();
 sorted.add(source);
 for (______________________________________) {

 if (________________________) {

 }
 }
 }
 return sorted;
}

CS61B Spring 2024

2 Topological Sorting for Cats
Now, make the following observation: If we remove all of the source nodes from a DAG, we are

guaranteed to have at least one new source node. Inspired by this fact, and using the previous parts,

complete the topologicalSort method. What is its runtime?

public List<Integer> topologicalSort() {
 List<Integer> sorted = new ArrayList<>();
 int[] indegree = computeInDegrees();
 // Hint: add elements from another iterable here
 Queue<Integer> sources = new ArrayDeque<>(findAllSourceNodes(indegree));
 while (!sources.isEmpty()) {
 int source = sources.poll();
 sorted.add(source);
 for (int w : adj(source)) {

 if (________________________) {

 }
 }
 }
 return sorted;
}

CS61B Spring 2024

2 Topological Sorting for Cats
Now, make the following observation: If we remove all of the source nodes from a DAG, we are

guaranteed to have at least one new source node. Inspired by this fact, and using the previous parts,

complete the topologicalSort method. What is its runtime?

public List<Integer> topologicalSort() {
 List<Integer> sorted = new ArrayList<>();
 int[] indegree = computeInDegrees();
 // Hint: add elements from another iterable here
 Queue<Integer> sources = new ArrayDeque<>(findAllSourceNodes(indegree));
 while (!sources.isEmpty()) {
 int source = sources.poll();
 sorted.add(source);
 for (int w : adj(source)) {
 indegree[w]--;
 if (________________________) {

 }
 }
 }
 return sorted;
}

CS61B Spring 2024

2 Topological Sorting for Cats
Now, make the following observation: If we remove all of the source nodes from a DAG, we are

guaranteed to have at least one new source node. Inspired by this fact, and using the previous parts,

complete the topologicalSort method. What is its runtime?

public List<Integer> topologicalSort() {
 List<Integer> sorted = new ArrayList<>();
 int[] indegree = computeInDegrees();
 // Hint: add elements from another iterable here
 Queue<Integer> sources = new ArrayDeque<>(findAllSourceNodes(indegree));
 while (!sources.isEmpty()) {
 int source = sources.poll();
 sorted.add(source);
 for (int w : adj(source)) {
 indegree[w]--;
 if (indegree[w] == 0) {

 }
 }
 }
 return sorted;
}

CS61B Spring 2024

2 Topological Sorting for Cats
Now, make the following observation: If we remove all of the source nodes from a DAG, we are

guaranteed to have at least one new source node. Inspired by this fact, and using the previous parts,

complete the topologicalSort method. What is its runtime?

public List<Integer> topologicalSort() {
 List<Integer> sorted = new ArrayList<>();
 int[] indegree = computeInDegrees();
 // Hint: add elements from another iterable here
 Queue<Integer> sources = new ArrayDeque<>(findAllSourceNodes(indegree));
 while (!sources.isEmpty()) {
 int source = sources.poll();
 sorted.add(source);
 for (int w : adj(source)) {
 indegree[w]--;
 if (indegree[w] == 0) {
 sources.add(w);
 }
 }
 }
 return sorted;
}

CS61B Spring 2024

2 Topological Sorting for Cats

Now, make the following observation: If we remove all of the source nodes from a DAG, we are

guaranteed to have at least one new source node, since the new graph is still a DAG. Inspired by this fact,

and using the previous parts, come up with an algorithm to topological sort. Is it more efficient?

Algorithm:
1. Create the indegree array from part 2.

2. Get all of the source nodes and add them to a queue.

3. While the queue is not empty:

a. Remove a vertex from the queue.

b. For all outgoing edges (u, v) of the vertex:

i. indegree[v] -= 1

ii. If indegree[v] == 0, add it to the queue.

Runtime: O(V + E)

CS61B Spring 2024

2 Topological Sorting for Cats

Next, describe an algorithm for finding all of the source nodes in a graph.

Example:

5

4

0

2

1

3

Adjacency list
0: []
1: []
2: [3]
3: [1]
4: [0, 2]
5: [0, 1]

Indegrees
[2, 2, 1, 1, 0, 0]

Sources
{4, 5}

CS61B Spring 2024

2 Topological Sorting for Cats

Next, describe an algorithm for finding all of the source nodes in a graph.

Example:

5

4

0

2

1

3

Adjacency list
0: []
1: []
2: [3]
3: [1]
4: [0, 2]
5: [0, 1]

Indegrees
[1, 2, 0, 1, 0, 0]

indegree[0] -= 1
indegree[2] -= 1

Sources
{4, 5}

Toposort
[4]

CS61B Spring 2024

2 Topological Sorting for Cats

Next, describe an algorithm for finding all of the source nodes in a graph.

Example:

5

0

2

1

3

Adjacency list
0: []
1: []
2: [3]
3: [1]
4: [0, 2]
5: [0, 1]

Indegrees
[1, 2, 0, 1, 0, 0]

sources.add(2)

Sources
{5, 2}

Toposort
[4]

CS61B Spring 2024

2 Topological Sorting for Cats

Next, describe an algorithm for finding all of the source nodes in a graph.

Example:

Adjacency list
0: []
1: []
2: [3]
3: [1]
4: [0, 2]
5: [0, 1]

Indegrees
[0, 1, 0, 1, 0, 0]

indegree[0] -= 1
indegree[1] -= 1

Sources
{5, 2}

Toposort
[4, 5]

5

0

2

1

3

CS61B Spring 2024

2 Topological Sorting for Cats

Next, describe an algorithm for finding all of the source nodes in a graph.

Example:

Adjacency list
0: []
1: []
2: [3]
3: [1]
4: [0, 2]
5: [0, 1]

Indegrees
[0, 1, 0, 1, 0, 0]

sources.add(0)

Sources
{2, 0}

Toposort
[4, 5]

0

2

1

3

CS61B Spring 2024

2 Topological Sorting for Cats

Next, describe an algorithm for finding all of the source nodes in a graph.

Example:

Adjacency list
0: []
1: []
2: [3]
3: [1]
4: [0, 2]
5: [0, 1]

Indegrees
[0, 1, 0, 0, 0, 0]

indegree[3] -= 1

Sources
{2, 0}

Toposort
[4, 5, 2]

0

2

1

3

CS61B Spring 2024

2 Topological Sorting for Cats

Next, describe an algorithm for finding all of the source nodes in a graph.

Example:

Adjacency list
0: []
1: []
2: [3]
3: [1]
4: [0, 2]
5: [0, 1]

Indegrees
[0, 1, 0, 0, 0, 0]

sources.add(3)

Sources
{0, 3}

Toposort
[4, 5, 2]

0

1

3

CS61B Spring 2024

2 Topological Sorting for Cats

Next, describe an algorithm for finding all of the source nodes in a graph.

Example:

Adjacency list
0: []
1: []
2: [3]
3: [1]
4: [0, 2]
5: [0, 1]

Indegrees
[0, 1, 0, 0, 0, 0]

Sources
{0, 3}

Toposort
[4, 5, 2, 0]

0

1

3

CS61B Spring 2024

2 Topological Sorting for Cats

Next, describe an algorithm for finding all of the source nodes in a graph.

Example:

Adjacency list
0: []
1: []
2: [3]
3: [1]
4: [0, 2]
5: [0, 1]

Indegrees
[0, 0, 0, 0, 0, 0]

indegree[1] -= 1

Sources
{3}

Toposort
[4, 5, 2, 0, 3]

1

3

CS61B Spring 2024

2 Topological Sorting for Cats

Next, describe an algorithm for finding all of the source nodes in a graph.

Example:

Adjacency list
0: []
1: []
2: [3]
3: [1]
4: [0, 2]
5: [0, 1]

Indegrees
[0, 0, 0, 0, 0, 0]

sources.add(1)

Sources
{1}

Toposort
[4, 5, 2, 0, 3]

1

CS61B Spring 2024

2 Topological Sorting for Cats

Next, describe an algorithm for finding all of the source nodes in a graph.

Example:

Adjacency list
0: []
1: []
2: [3]
3: [1]
4: [0, 2]
5: [0, 1]

Indegrees
[0, 0, 0, 0, 0, 0]

Sources
{}

Toposort
[4, 5, 2, 0, 3, 1]

1

CS61B Spring 2024

2 Topological Sorting for Cats

Next, describe an algorithm for finding all of the source nodes in a graph.

Example:

5

4

0

2

1

3

Toposort
[4, 5, 2, 0, 3, 1]

54 2 3 10

CS61B Spring 2024

2 Topological Sorting for Cats

How can you modify the method topologicalSort above to detect whether the graph has a cycle?

CS61B Spring 2024

2 Topological Sorting for Cats

How can you modify the method topologicalSort above to detect whether the graph has a cycle?

If the graph has a cycle, at some point we will not be able to find any more sources, but there will still be

things that we have not “removed” from the graph.

Therefore, we can check if there are any non-zero elements in the indegree array after the while loop.

If there are, then the graph has a cycle.

4

0

2

3
0

2

3

CS61B Spring 2024

3 Word Search

Given an N by N wordsearch and N words, devise an algorithm to solve the word-search in O(N3). For

simplicity, assume no word is contained within another, i.e. if the word ”bear” is given, ”be” wouldn’t also

be given.

Hint: Add the words to a Trie, and you may find the longestPrefixOf operation helpful. Recall that

longestPrefixOf accepts a String key and returns the longest prefix of key that exists in the Trie, or

null if no prefix exists.

CS61B Spring 2024

3 Word Search

Algorithm:

1. Add all words to a Trie.

2. For each letter in the word search:

a. For each direction in [N, NE, E, SE, S, SW, W, NW]:

i. Check longestPrefixOf in that direction

ii. If longestPrefixOf returns a word, delete that word from our Trie.

CS61B Spring 2024

3 Word Search

Example:

C M U H O S A E D
T R A T H A N K A

S

O

H

A

N

T

U

M

O

N

H

E

R

R

Y

longestPrefixOf(“SOHUMC”)

CS61B Spring 2024

3 Word Search

Example:

C M U H O S A E D
T R A T H A N K A

longestPrefixOf(“SOHUMC”)

S

O

H

A

N

T

U

M

O

N

H

E

R

R

Y

CS61B Spring 2024

3 Word Search

Example:

C M U H O S A E D
T R A T H A N K A

longestPrefixOf(“SOHUMC”)

S

O

H

A

N

T

U

M

O

N

H

E

R

R

Y

CS61B Spring 2024

3 Word Search

Example:

C M U H O S A E D
T R A T H A N K A

S

O

H

A

N

T

U

M

O

N

H

E

R

R

Y

longestPrefixOf(“SOHUMC”)

S

O

H

A

N

T

U

M

O

N

H

E

R

R

Y

CS61B Spring 2024

3 Word Search

Example:

C M U H O S A E D
T R A T H A N K A

longestPrefixOf(“SOHUMC”)

S

O

H

A

N

T

U

M

O

N

H

E

R

R

Y

S

O

H

A

N

T

U

M

O

N

H

E

R

R

Y

CS61B Spring 2024

3 Word Search

Example:

C M U H O S A E D
T R A T H A N K A

longestPrefixOf(“SOHUMC”)
→ “SOHUM”

S

O

H

A

N

T

U

M

O

N

H

E

R

R

Y

S

O

H

A

N

T

U

M

O

N

H

E

R

R

Y

CS61B Spring 2024

3 Word Search

Algorithm:

1. Add all words to a Trie.

2. For each letter in the word search:

a. For each direction in [N, NE, E, SE, S, SW, W, NW]:

i. Check longestPrefixOf in that direction

ii. If longestPrefixOf returns a word, delete that word from our Trie.

Runtime: N2 letters, and longestPrefixOf runs in O(L) time where L is the length of the string. L < N,

so total runtime is O(N3).

